INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

Nr. LA.01.031

TEST REPORT No. 267 SF/24 R Date: 4th of November 2024 page (pages) 1(6)

Test methods:

LST EN ISO 22097:2023 Thermal insulation for buildings - Reflective insulation

products - Determination of thermal performance.

LST EN 12667:2002 Thermal performance of building materials and products - Determination of thermal resistance by means of guarded hot plate and heat flow meter

methods - Products of high and medium thermal resistance.

Test method – heat flow meter.

Type and identification of apparatus - symmetrical single-specimen apparatus No.

1/99 (ISO 8301).

(number of normative document or test method, description of test procedure, test uncertainty)

Customer: SAS

SAS ATI FRANCE, SAS ATI FRANCE, Parc industriel de la Plaine de l'Aine - 1

Avenue des Troussilières- 01150 BLYES, France

(name and address)

Manufacturer:

SAS ATI FRANCE, SAS ATI FRANCE, Parc industriel de la Plaine de l'Aine - 1

Avenue des Troussilières- 01150 BLYES, France

(name and address)

Samples description:

Type 2 multilayer reflective insulation Bulld'Oz'Air, 600×600mm; Declared thickness

of product 12±2mm.

(name, description and identification details of a specimen)

Samples selected:

By customer

(who selected/place/date)

(name and address)

Samples delivery date:

29/10/2024

Place of samples

conditioning:

Building Physics Laboratory, Institute of Architecture and Construction Kaunas University of Technology, Tunelio st. 60, LT 44451 Kaunas, Lithuania

(name and address)

Samples conditioning

date:

29/10/2024 - 30/10/2024

Date of testing:

30/10/2024 -31/10/2024

Production date:

no data

Tested at:

Building Physics Laboratory IAC KTU

Test results:

Name of the indicator and unit	Test method reference no.	Test result
Declared core thermal resistance of product		
Bulld'Oz'Air, $R_{D(core)}$ 90/90, (m ² ·K)/W		0.29
Declared thermal resistance of system with 2 air gaps	LST EN ISO 22097:2023	
R_{system} 90/90, (m ² ·K)/W		1.60

Additional information:

Mean ambience temperature 10.00 °C, Ambience relative humidity 65.0 %.

Annexes:

Annex 1. Tests results; Annex 2. Calculation of declared thermal resistance; Annex 3. Calculation of thermal resistance including associated airspaces; Annex 4. The

parameters of heat flow meter apparatus.

Technical manager:

(approves the test results)

Tested by:

DOKUMENTAL

Wos Respub

(signature)

J. Ramanauskas

(n., surname)

(technically responsible for testing)

S.P.

(signature)

A. Burlingis (n., sumame)

2(2)

Annex 1. Tests results:

Specimen No. 267-1/24

Heat flow direction – vertical			
Conditioning of sample – Climate chamber 48 h, $T = 23\pm2^{\circ}C$, $RH = 50\pm5$ %.			
Testing parameters	unit	Value	
Temperature of hot plate, <i>T(h)</i>	°C	20.02	
Temperature of cold plate, $T(c)$	°C	0.02	
Density of heat flow of hot plate, $q(h)$	W/m²	31.51	
Density of heat flow of cold plate, $q(c)$	W/m²	32.61	
Mean density of heat flow through the specimen, q	W/m²	31.06	
Mean temperature of specimen, T	°C	10.02	
Mean thermal conductivity, λ	W/(m·K)	0.04181	
Uncertainty of the measurement, $\Delta\lambda$	W/(m·K)	± 0.000182	
Core thermal resistance, Rc	(m ² ·K)/W	0.64389	
Uncertainty of the measurement, ΔR	m ² ·K/W	± 0.0024	

Specimen No. 267-2/24

Heat flow direction – vertical			
Conditioning of sample – Climate chamber 48 h, $T = 23\pm2^{\circ}C$, $RH = 50\pm5$ %.			
Testing parameters	unit	Value	
Temperature of hot plate, <i>T(h)</i>	°C	20.02	
Temperature of cold plate, $T(c)$	°C	0.01	
Density of heat flow of hot plate, $q(h)$	W/m²	32.24	
Density of heat flow of cold plate, $q(c)$	W/m²	31.58	
Mean density of heat flow through the specimen, q	W/m²	31.91	
Mean temperature of specimen, T	°C	10.02	
Mean thermal conductivity, λ	W/(m·K)	0.04205	
Uncertainty of the measurement, $\Delta\lambda$	W/(m·K)	± 0.000181	
Core thermal resistance, Rc	(m ² ·K)/W	0.62713	
Uncertainty of the measurement, ΔR	m ² ·K/W	± 0.0023	

3(2)

Specimen No. 267-3/24

Heat flow direction – vertical			
Conditioning of sample – Climate chamber 48 h, $T = 23\pm2^{\circ}C$, $RH = 50\pm5$ %.			
Testing parameters	unit	Value	
Temperature of hot plate, <i>T(h)</i>	°C	20.02	
Temperature of cold plate, <i>T</i> (<i>c</i>)	°C	0.02	
Density of heat flow of hot plate, $q(h)$	W/m²	33.15	
Density of heat flow of cold plate, $q(c)$	W/m²	32.24	
Mean density of heat flow through the specimen, q	W/m²	32.70	
Mean temperature of specimen, T	°C	10.02	
Mean thermal conductivity, λ	W/(m·K)	0.04278	
Uncertainty of the measurement, $\Delta\lambda$	W/(m·K)	± 0.000182	
Core thermal resistance, Rc	(m ² ·K)/W	0.61168	
Uncertainty of the measurement, ΔR	m ² ·K/W	± 0.0022	

Specimen No. 267-4/24

Heat flow direction – vertical			
Conditioning of sample – Climate chamber 48 h, $T = 23\pm2^{\circ}C$, $RH = 50\pm5$ %.			
Testing parameters	unit	Value	
Temperature of hot plate, $T(h)$	°C	20.02	
Temperature of cold plate, $T(c)$	°C	0.02	
Density of heat flow of hot plate, $q(h)$	W/m²	32.19	
Density of heat flow of cold plate, $q(c)$	W/m²	31.30	
Mean density of heat flow through the specimen, q	W/m²	31.73	
Mean temperature of specimen, T	°C	10.02	
Mean thermal conductivity, λ	W/(m·K)	0.04247	
Uncertainty of the measurement, $\Delta\lambda$	W/(m·K)	± 0.000183	
Core thermal resistance, Rc	(m ² ·K)/W	0.63033	
Uncertainty of the measurement, ΔR	m ² ·K/W	± 0.0023	

4(2)

Annex 2. Calculation of declared thermal resistance

Sample	Core thermal	Efective thermal	Thickness of
No.	resistance of double	conductivity, λ	double sample,
	sample, Rc	***	<u>mm</u>
1	0.643888	0.0418085	26.92
2	0.627129	0.0420488	26.37
3	0.611684	0.0427835	26.17
4	0.630327	0.0424700	26.77
Average:	0.6283	0.0423	26.56

Sample size: 600 x 600 mm.

Declared derived R-value of double insulation product:

$$S_{R(core)} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}};$$

 $S_{R(core)} = 0.01557;$

$$R_{D(core)90/90} = R_{average} - k_2 \cdot S_{R(core)};$$

 $k_2 = 3.19$

$$R_{D(core)} = 0.59173 = 0.59 \text{ m}^2 \cdot \text{K/W}$$

Declared thermal resistance of the core RD(core) of one insulation product

 $R_{D(core)} = 0.59173/2 = 0.29586 = 0.29 \text{ m}^2 \cdot \text{K/W}$

INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KTU

TEST REPORT No. 267 SF/24 R

Building Physics Laboratory

5(2)

Annex 3. Calculation of thermal resistance including associated airspaces according EN 16863 Annex D and EN ISO 6946:

- Declared emissivity of the product surfaces 0.05;
- Temperature difference across each air cavity of 5K, mean temperature of 10°C;
- Thermal resistance of one air gaps 0.6640 m²·K/W;
- Thermal resistance of two air gaps 1.3280 m²·K/W;

Calculation of thermal resistance including two vertical airspaces:

Air gap 20 mm – Product - Air gap 20 mm

 $R_{D(system)} 90/90 = 0.29586 + 1.3280 = 1.62386 = 1.60 \text{ m}^2 \cdot \text{K/W}$

6(2)

Annex 4. The parameters of heat flow meter apparatus:

SCHEME OF HEAT FLOW METER APPARATUS Single specimen symmetrical configuration apparatus

- 1 -Specimen under testing;
- 2 Cooling plate;
- 3 Heating plate;
- 4 Cooling thermostat:
- 5 Heating thermostat:
- 6 Heat flow meter at heating plate:

- 7 Heat flow meter at cooling plate;
- 8 Thermo-couple;
- 9 Guarded space,
- 10 Surrounding with controlled constant temperature.

Notes:

- Specimen dimensions 600 x 600 mm, central measuring area of heat flow meter 250 x 250 mm.
- Possibility to measure under various heat flow directions: horizontal, upwards, downwards, on different angles with horizontal plane.
- Used edge heat losses reduction methods:
 - > Specimen thickness limitation (to 150 mm);
 - > Controlled ambient temperature during the test equal to the mean specimen temperature.