INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF **TECHNOLOGY**

BUILDING PHYSICS LABORATORY

Nr. LA.01.031

TEST REPORT No. 256 SF/24 R Date: 28th of October 2024

page (pages) 1(2)

Test methods:

LST EN ISO 22097:2023 Thermal insulation for buildings - Reflective insulation

products - Determination of thermal performance.

LST EN 12667:2002 Thermal performance of building materials and products -Determination of thermal resistance by means of guarded hot plate and heat flow meter

methods - Products of high and medium thermal resistance.

Test method - heat flow meter.

Type and identification of apparatus – symmetrical single-specimen apparatus No.

1/99 (ISO 8301).

(number of normative document or test method, description of test procedure, test uncertainty)

Customer:

SAS ATI FRANCE, SAS ATI FRANCE, Parc industriel de la Plaine de l'Aine - 1

Avenue des Troussilières- 01150 BLYES, France

(name and address)

Manufacturer:

SAS ATI FRANCE, SAS ATI FRANCE, Parc industriel de la Plaine de l'Aine - 1

Avenue des Troussilières- 01150 BLYES, France

(name and address)

Samples description:

Type 2 multilayer reflective insulation AIRFLEX, 600×600mm

(name, description and identification details of a specimen)

Samples selected:

By customer

(who selected/place/date)

Samples delivery date:

21/10/2024

Place of samples conditioning:

Building Physics Laboratory, Institute of Architecture and Construction Kaunas

University of Technology, Tunelio st. 60, LT 44451 Kaunas, Lithuania

(name and address)

Samples conditioning

date:

21/10/2024 - 22/10/2024

Date of testing:

22/10/2024 - 23/10/2024

Production date:

no data

Tested at:

Building Physics Laboratory IAC KTU

(name and address)

Test	resu	ts:
TOSE	LOU	

Name of the indicator and unit	Test method reference no.	Test result
Declared core thermal resistance of product		0.00
AIRFLEX, $R_{D(core)}$ 90/90, (m ² ·K)/W	V	0.28
Declared thermal resistance of system with 2 air gaps	LST EN ISO 22097:2023	
R_{system} 90/90, (m ² ·K)/W		1.60

Additional

Mean ambience temperature 10.00 °C,

information:

Ambience relative humidity 65.0 %.

Annexes:

Annex 1. Tests results; Annex 2. Calculation of declared thermal resistance: Annex 3. Calculation of thermal resistance including associated airspaces; Annex 4.

parameters of heat flow meter apparatus.

Technical manager: (approves the test results)

(signature)

J. Ramanauskas (n., surname)

Tested by:

A. Burlingis

(n., surname)

DOKUMENTAL (technically responsible for testing)

S.P.

2(2)

Annex 1. Tests results:

Specimen No. 256-1/24

Heat flow direction – vertical				
Conditioning of sample – Climate chamber 48 h, T	Conditioning of sample – Climate chamber 48 h, $T = 23\pm2^{\circ}C$, $RH = 50\pm5$ %.			
Testing parameters unit Value				
Temperature of hot plate, <i>T(h)</i>	°C	20.02		
Temperature of cold plate, $T(c)$	°C	0.02		
Density of heat flow of hot plate, $q(h)$	W/m²	32.51		
Density of heat flow of cold plate, $q(c)$	W/m²	32.24		
Mean density of heat flow through the specimen, q	W/m²	32.37		
Mean temperature of specimen, T	°C	10.02		
Mean thermal conductivity, λ	W/(m·K)	0.03912		
Uncertainty of the measurement, Δλ	W/(m·K)	± 0.000172		
Core thermal resistance, Rc	(m ² ·K)/W	0.61781		
Uncertainty of the measurement, ΔR	m ² ·K/W	± 0.0022		

Specimen No. 256-2/24

Heat flow direction – vertical			
Conditioning of sample – Climate chamber 48 h, $T = 23\pm2^{\circ}$ C, $RH = 50\pm5$ %.			
Testing parameters unit Value			
Temperature of hot plate, $T(h)$	°C	20.02	
Temperature of cold plate, $T(c)$	°C	0.01	
Density of heat flow of hot plate, $q(h)$	W/m²	34.00	
Density of heat flow of cold plate, $q(c)$	W/m²	32.43	
Mean density of heat flow through the specimen, q	W/m²	32.21	
Mean temperature of specimen, T	°C	10.02	
Mean thermal conductivity, λ	W/(m·K)	0.04004	
Uncertainty of the measurement, $\Delta\lambda$	W/(m·K)	± 0.000173	
Core thermal resistance, Rc	(m ² ·K)/W	0.6025	
Uncertainty of the measurement, ΔR	m ² ·K/W	± 0.0021	

3(2)

Specimen No. 256-3/24

Heat flow direction – vertical			
Conditioning of sample – Climate chamber 48 h, $T = 23\pm2^{\circ}C$, $RH = 50\pm5$ %.			
Testing parameters	unit	Value	
Temperature of hot plate, <i>T(h)</i>	°C	20.02	
Temperature of cold plate, $T(c)$	°C	0.01	
Density of heat flow of hot plate, $q(h)$	W/m²	35.76	
Density of heat flow of cold plate, $q(c)$	W/m²	32.48	
Mean density of heat flow through the specimen, q	W/m²	34.12	
Mean temperature of specimen, T	°C	10.01	
Mean thermal conductivity, λ	W/(m·K)	0.03938	
Uncertainty of the measurement, Δλ	W/(m·K)	± 0.000170	
Core thermal resistance, Rc	(m ² ·K)/W	0.5861	
Uncertainty of the measurement, ΔR	m ² ·K/W	± 0.0020	

Specimen No. 256-4/24

Heat flow direction – vertical			
Conditioning of sample – Climate chamber 48 h, $T = 23\pm2^{\circ}$ C, $RH = 50\pm5$ %.			
Testing parameters unit Value			
Temperature of hot plate, <i>T(h)</i>	°C	20.02	
Temperature of cold plate, $T(c)$	°C	0.02	
Density of heat flow of hot plate, $q(h)$	W/m²	34.50	
Density of heat flow of cold plate, $q(c)$	W/m²	32.12	
Mean density of heat flow through the specimen, q	W/m²	33.31	
Mean temperature of specimen, T	°C	10.02	
Mean thermal conductivity, λ	W/(m·K)	0.03812	
Uncertainty of the measurement, $\Delta\lambda$	W/(m·K)	± 0.000168	
Core thermal resistance, Rc	(m ² ·K)/W	0.6004	
Uncertainty of the measurement, ΔR	m ² ·K/W	± 0.0021	

4(2)

Annex 2. Calculation of declared thermal resistance

Sample	Core thermal	Efective thermal	Thickness of
No.	resistance of double	conductivity, λ	double sample,
	sample, Rc		<u>mm</u>
1	0.617808	0.391222	24.17
2	0.602462	0.0400357	24.12
3	0.586127	0.0393771	23.08
4	0.600431	0.0381226	22.89
Average:	0.601707	0.0391644	23.57

Sample size: 600 x 600 mm.

Declared derived R-value of double insulation product:

$$S_{R(core)} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}};$$

 $S_{R(core)} = 0.01123;$

$$R_{D(core)90/90} = R_{average} - k_2 \cdot S_{R(core)};$$

 $k_2 = 3.19$

$$R_{D(core) 90/90} = 0.56589 = 0.56 \text{ m}^2 \cdot \text{K/W}$$

Declared thermal resistance of the core RD(core) of one insulation product

 $R_{D(core)} = 0.56589/2 = 0.282945 = 0.28 \text{ m}^2 \cdot \text{K/W}$

INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KTU

TEST REPORT No. 256 SF/24 R

Building Physics Laboratory

5(2)

Annex 3. Calculation of thermal resistance including associated airspaces according EN 16863 Annex D and EN ISO 6946:

- Declared emissivity of the product surfaces 0.05;
- Temperature difference across each air cavity of 5K, mean temperature of 10°C;
- Thermal resistance of one air gaps 0.6640 m²·K/W;
- Thermal resistance of two air gaps 1.3280 m²·K/W;

Calculation of thermal resistance including two vertical airspaces:

Air gap 20 mm – Product - Air gap 20 mm

 $R_{D(system)} = 0.282945 + 1.3280 = 1.610945 = 1.60 \text{ m}^2 \cdot \text{K/W}$

6(2)

Annex 4. The parameters of heat flow meter apparatus:

SCHEME OF HEAT FLOW METER APPARATUS Single specimen symmetrical configuration apparatus

- 1 Specimen under testing;
- 2 Cooling plate;
- 3 Heating plate;
- 4 Cooling thermostat;
- 5 Heating thermostat;
- 6 Heat flow meter at heating plate;

- 7 Heat flow meter at cooling plate;
- 8 Thermo-couple;
- 9 Guarded space,
- 10 Surrounding with controlled constant temperature.

Notes:

- Specimen dimensions 600 x 600 mm, central measuring area of heat flow meter 250 x 250 mm.
- Possibility to measure under various heat flow directions: horizontal, upwards, downwards, on different angles with horizontal plane.
- Used edge heat losses reduction methods:
 - > Specimen thickness limitation (to 150 mm);
 - > Controlled ambient temperature during the test equal to the mean specimen temperature.