INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 070 SF/23

Date: 09 of May 2023

page (pages)

1(3)

Determination of installed thermal resistance into a roof and into a wall of ATI PRO Excellence Permeable according to EN ISO 6946:2017

(test name)

Test method:

Determination of installed thermal resistance into a roof and into a wall of ATI PRO Excellence

Permeable according to EN ISO 6946:2017

(number of normative document or test method, description of test procedure, test uncertainty)

Product name:

ATI PRO Excellence Permeable

(identification of the specimen)

Customer:

SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France

(name and address of enterprise)

Manufacturer:

SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France

Calculation results:

Calculation results.			
Roof slope angle, α	Calculation method reference no.	Calculation result, <i>R</i> , (m ² ·K)/W	
Flat roof ($\alpha = 0^{\circ}$)		4.04	
Pitched roof ($\alpha = 30^{\circ}$)	EN ISO 6946:2017	4.09	
Pitched roof ($\alpha = 45^{\circ}$)		4.12	
Wall ($\alpha = 90^{\circ}$)		4.27	

R value for others pitched sloop (different α value) can be determined by linear interpolation between two calculated R values

Calculation

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

made by:

University of Technology

(Name of the organization)

Products used

Ventilated air layer 20 mm (external surface resistance R_{se}). Metallized membrane, $\varepsilon = 0.25^*$.

in calculation:

Multilayer reflective insulation product APRO (test report no. 065 SF/23 U).

Metallized reinforced perforated film, $\varepsilon = 0.15^*$.

Unventilated air layer 20 mm; * Declared by the manufacturer

OKUMENTAL

Additional information:

Application, 2023-04-06

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

(approves the test results)

K. Banionis

(n., surname)

Calculated by

(calculation made by)

Ramanauskas (n., surname)

_

(sionature)

Validity - the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m ² ·K)/W	
APRO (test report n° 065 SF/23 U)	$R_{\text{core}90/90} = 3.52$	
"Rcore 90/90" is the declared R core value following EN $16012 + A1$. "Rcore 90/90" is calculated on 4 results of 4 samples came from 4 different fabrication dates following		
EN 16012 + A1 (and using the fractile 90/90 calculat	tion rules $S_{R-prod} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}};$).	

Te	mperature regime 20°C/0°C
1.	Unventilated Air cavity #1, 20 mm
2.	Metallized reinforced perforated film, $\epsilon_1 = 0.15$ 230406 Emissivité Film armé micro-perforé
3.	APRO, 100 mm
4.	Metallized membrane, $\varepsilon_2 = 0.25$ 230406 Emissivité Ecran HPV métallisé
5	Ventilated Air cavity #2, 20 mm

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope α = 0° (EN ISO 6946)

ATI PRO Excellence Permeable installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.3593	m²·K/W
	Metallized reinforced perforated film		
	APRO	3.52	m ² ·K/W
	Metallized membrane		
	Ventilated Air cavity # 2 (the thermal resistance of external surface R_{se})	0.1621	m²-K/W
	R Total	4.04	m ² ·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 3: Roof construction calculation results for slope $\alpha = 30^{\circ}$ (EN ISO 6946)

ATI PRO Excellence Permeable installed on roof			
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.3922	m²·K/W
	Metallized reinforced		
	perforated film		
	APRO	3.52	m²·K/W
	Metallized membrane		
	Ventilated Air cavity # 2 (the		
	thermal resistance of external	0.1764	m²·K/W
	surface R_{se})		
	R Total	4.09	m2·K/W

Table 4: Roof construction calculation results for slope α = 45° (EN ISO 6946)

ATI PRO Excellence Permeable installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4110	m²·K/W
	Metallized reinforced		
	perforated film		
	APRO	3.52	m²·K/W
	Metallized membrane		
	Ventilated Air cavity # 2 (the		
	thermal resistance of external	0.1863	m²·K/W
	surface R_{se})		
	R Total	4.12	m ² ·K/W

Table 5: Wall construction calculation results for slope α = 90° (EN ISO 6946)

ATI PRO Excellence Permeable installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4801	m²·K/W
	Metallized reinforced		
	perforated film		
	APRO	3.52	m²·K/W
	Metallized membrane		
	Ventilated Air cavity # 2 (the		
	thermal resistance of external	0.2726	m²⋅K/W
	surface R_{se})		
	R Total	4.27	m²·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 0° to 90°).
- Calculations of R values are valid when APRO is installed in agreement with the installation guidelines described into the manufacturer brochure.

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.