INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 111 SF/23

page (pages)

1 (3)

Date: 06 of June 2023

Determination of installed thermal resistance into a roof and into a wall of ATI COMBI PRO TOITURE according to EN ISO 6946:2017

(test name)

Test method: Determination of installed thermal resistance into a roof and into a wall according to

EN ISO 6946:2017

(number of normative document or test method, description of test procedure, test uncertainty)

ATI COMBI PRO TOITURE Product name:

(identification of the specimen)

SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France Customer:

(name and address of enterprise)

Manufacturer: SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France

Calculation results:

Roof slope angle, α	Calculation method reference no.	Calculation result, <i>R</i> , (m ² ·K)/W
Flat roof ($\alpha = 0^{\circ}$)		6.36
Pitched roof ($\alpha = 30^{\circ}$)	EN ISO 6946:2017	6,46
Pitched roof ($\alpha = 45^{\circ}$)	EN 150 0940.2017	6,51
Wall ($\alpha = 90^{\circ}$)		6.73

R value for others pitched sloop (different α value) can be determined by linear interpolation between two calculated R values

Calculation

made by:

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

University of Technology

(Name of the organization)

Products used in calculation:

Ventilated air layer (external surface resistance R_{se}).

Multilayer reflective insulation product ATI PRO BASIC P (test report no. 082 SF/23 U). Emissivity of ATI PRO BASIC P upper surface $\varepsilon = 0.75^*$; lower surface $\varepsilon = 0.15^*$;

Unventilated air layer 20 mm;

Multilayer reflective insulation product ATI PRO PREMIUM (test report no. 106 SF/23 U). Emissivity of ATI PRO PREMIUM upper surface $\varepsilon = 0.10^*$; lower surface $\varepsilon = 0.10*$;

Unventilated air layer 20 mm. * Declared by the manufacturer

Additional information:

Application, 2023-06-02

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

s Respub (approves the test results)

K. Banionis

(n., surname)

Calculated by (calculation made by)

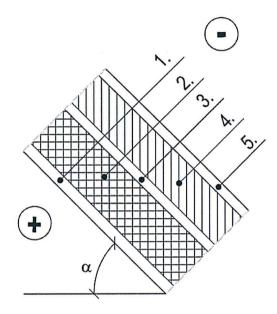
OKUMENT

J. Ramanauskas

(n., surname)

S.P.

Validity - the named data and results refer exclusively to the tested and described specimens.


Notes on publication - no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m ² ·K)/W
ATI PRO BASIC P (test report n° 082 SF/23 U)	$R_{core90/90} = 1.91$
ATI PRO PREMIUM (test report no. 106 SF/23 U)	$R_{core90/90} = 3.52$
"Rcore90/90" is the declared R core value following E	
"Rcore90/90" is calculated on 4 results of 4 samples of	came from 4 different fabrication dates following
EN 16012 + A1 (and using the fractile 90/90 calculati	fon rules $S_{R-prod} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}}$;).

Tem	perature regime 20°C / 0°C
1.	Unventilated Air cavity #1, 20 mm
2.	ATI PRO PREMIUM
3.	Unventilated Air cavity #2, 20 mm
4.	ATI PRO BASIC P
5.	Ventilated Air cavity #3, 20 mm

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope α = 0° (EN ISO 6946)

ATI COMBI PRO TOITURE installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.3987	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	Unventilated Air cavity # 2	0.4132	m²·K/W
	ATI PRO BASIC P	1.91	m²·K/W
	Ventilated Air cavity # 3 (the thermal resistance of external surface R_{se})	0.1180	m²·K/W
	R Total	6.36	m ² ·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 3: Roof construction calculation results for slope α = 30° (EN ISO 6946)

ATI COMBI PRO TOITURE installed on roof			
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4396	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	Unventilated Air cavity # 2	0.4573	m²·K/W
	ATI PRO BASIC P	1.91	m²·K/W
	Ventilated Air cavity # 3 (the		
	thermal resistance of external	0.1303	m²·K/W
	surface R_{se})		
	R Total	6.46	m2·K/W

Table 2: Roof construction calculation results for slope α = 45° (EN ISO 6946)

ATI COMBI PRO TOITURE installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4634	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	Unventilated Air cavity # 2	0.4830	m²·K/W
	ATI PRO BASIC P	1.91	m²·K/W
	Ventilated Air cavity # 3 (the		
	thermal resistance of external	0.1374	m²·K/W
	surface R_{se})		
	R Total	6.51	m²·K/W

Table 3: Wall construction calculation results for slope α = 90° (EN ISO 6946)

ATI COMBI PRO TOITURE installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.5531	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	Unventilated Air cavity # 2	0.5813	m²·K/W
	ATI PRO BASIC P	1.91	m²·K/W
	Ventilated Air cavity # 3 (the thermal resistance of external surface R_{se})	0.1673	m²·K/W
	R Total	6.73	m ² ·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 0° to 90°).
- Calculations of R values are valid when ATI PRO is installed in agreement with the installation guidelines described into the manufacturer brochure.

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.