INSTITUTE OF ARCHITECTURE AND CONSTRUCTION OF KAUNAS UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 234 SF/23

Date: 05 of December 2023

page (pages)

1 (3)

Determination of installed thermal resistance into a roof and into a wall of ATI MIX FIBRE DE BOIS INTERIEUR according to EN ISO 6946:2017

(test name)

Test method:

Determination of installed thermal resistance into a roof and into a wall according to

EN ISO 6946:2017 and EN 16863:2023

(number of normative document or test method, description of test procedure, test uncertainty)

Product name:

ATI MIX FIBRE DE BOIS INTERIEUR

(identification of the specimen)

Customer:

SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France

(name and address of enterprise)

Manufacturer: SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France

Calculation results:

Calculation method reference no.	result, R , (m ² ·K)/W
1 -	6.13
EN ISO 6046,2017	6.18
EN ISO 6946:2017	6.21
	6.33
	EN ISO 6946:2017

R value for others pitched sloop (different α value) can be determined by linear interpolation between two calculated R values

Calculation

made by:

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas

University of Technology

(Name of the organization)

Products used in calculation:

Ventilated air layer (external surface resistance R_{se}).

Wood fiber panel "Pavaflex" 80 mm, $\lambda_{ref} = 0.038 \text{ W(m·K)}$; R = 2.10 (m²·K)/W *; $\varepsilon = 0.90$. Multilayer reflective insulation product ATI PRO PREMIUM (test report no. 106 SF/23 U). Emissivity of ATI PRO PREMIUM upper surface $\varepsilon = 0.10^{**}$; lower surface $\varepsilon = 0.10^{**}$.

Unventilated air layer 20 mm.

* CERTIFICAT ACERMI N° 17/006/1259 Licence n° 17/006/1259 ** Declared by the manufacturer

S.P.

Additional information:

Application, 2023-11-08

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory:

K. Banionis

(approves the test results)

Respubl (n., surname)

Calculated by

(calculation made by)

J. Ramanauskas

Validity - the named data and results refer exclusively to the tested and described specimens. Notes on publication - no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Product	Thermal resistance R, (m ² ·K)/W	
PAVAFLEX 80 (CERTIFICAT ACERMI		
N° 17/006/1259 Licence n° 17/006/1259)	$\mathbf{R} = 2.10$	
ATI PRO PREMIUM (test report no. 106 SF/23 U)	$R_{\text{core}90/90} = 3.52$	
"Rcore90/90" is the declared R core value following EN 16012 + A1.		
"Rcore90/90" is calculated on 4 results of 4 samples of	came from 4 different fabrication dates following	
EN 16012 + A1 (and using the fractile 90/90 calculation	on rules $S_{R-vrod} = \sqrt{\frac{\sum (R_i - R_{average})^2}{\sum (R_i - R_{average})^2}};$	

Temperature regime of air cavities: $\theta_{mn} = 10 \text{ °C}$; $\Delta T = 5 \text{ K}$		
1.	Unventilated Air cavity #1, 20 mm	
2.	ATI PRO PREMIUM	
3.	PAVAFLEX, 80 mm	
4.	Ventilated Air cavity #2, 20 mm	

Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope $\alpha = 0^{\circ}$ (EN ISO 6946)

ATI MIX FIBRE DE BOIS INTERIEUR installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4066	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	PAVAFLEX 80	2.10	m²·K/W
	Ventilated Air cavity # 2 (the		
	thermal resistance of external	0.1038	m ² ·K/W
	surface R_{se})		
	R Total	6.13	m2·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 3: Roof construction calculation results for slope α = 30° (EN ISO 6946)

ATI MIX FIBRE DE BOIS INTERIEUR installed on roof			
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4493	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	PAVAFLEX 80	2.10	m²·K/W
	Ventilated Air cavity # 2 (the		
	thermal resistance of external	0.1132	m²·K/W
	surface R_{se})		
	R Total	6.18	m2·K/W

Table 2: Roof construction calculation results for slope α = 45° (EN ISO 6946)

ATI MIX FIBRE DE BOIS INTERIEUR installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.4741	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	PAVAFLEX 80	2.10	m²·K/W
	Ventilated Air cavity # 2 (the		
	thermal resistance of external	0.1186	m ² ·K/W
	surface R_{se})		
	R Total	6.21	m²·K/W

Table 3: Wall construction calculation results for slope α = 90° (EN ISO 6946)

ATI MIX FIBRE DE BOIS INTERIEUR installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	Unventilated Air cavity # 1	0.5684	m²·K/W
	ATI PRO PREMIUM	3.52	m²·K/W
	PAVAFLEX 80	2.10	m²·K/W
	Ventilated Air cavity # 2 (the		
	thermal resistance of external	0.1402	m ² ·K/W
	surface R_{se})		
	R Total	6.33	m ² ·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 0° to 90°).
- Calculations of R values are valid when ATI PRO PREMIUM is installed in agreement with the installation guidelines described into the manufacturer brochure.

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.