INSTITUTE OF ARCHITECTURE AND **CONSTRUCTION OF KAUNAS** UNIVERSITY OF TECHNOLOGY

BUILDING PHYSICS LABORATORY

CALCULATION REPORT No. 173 SF/23

Date: 05 of September 2023

page (pages)

1 (3)

Determination of installed thermal resistance into a roof and into a wall of ATI MIX OUATE DE CELLULOSE according to EN ISO 6946:2017

(test name) Determination of installed thermal resistance into a roof and into a wall according to EN ISO 6946:2017 (number of normative document or test method, description of test procedure, test uncertainty) ATI MIX OUATE DE CELLULOSE: APRO EXCELLENCE + PAVACELL P 80 (identification of the specimen) SAS ATI FRANCE, 146 Avenue du Bicentenaire - FR-01120 Dagneux, France

(name and address of enterprise) SAS ATI FRANCE, 146 Avenue du Bicentenaire – FR-01120 Dagneux, France Manufacturer:

Calculation results:

Test method:

Product name:

Customer:

Roof slope angle, α	Calculation method reference no.	Calculation result, <i>R</i> , (m ² ·K)/W
Flat roof ($\alpha = 0^{\circ}$)	FN 190 (04(2017	6.10
Pitched roof ($\alpha = 30^{\circ}$)		6.16
Pitched roof ($\alpha = 45^{\circ}$)	EN ISO 6946:2017	6.19
Wall ($\alpha = 90^{\circ}$)		6.34
R value for others nitched sloon (different a value) can be determined by linear interpolation between two calculated		

sloop (different lpha value) can be determined by linear inter R values

Building Physics Laboratory, Institute of Architecture and Construction of Kaunas Calculation University of Technology made by:

(Name of the organization)

Products used

Ventilated air layer 20 mm (external surface resistance R_{se});

Metallized membrane, $\varepsilon = 0.25^*$; in calculation:

Multilayer reflective insulation product APRO (test report no. 065 SF/23 U):

Metallized reinforced perforated film, $\varepsilon = 0.15*$;

Unventilated air layer 20 mm;

Cellulose fiber panel "Pavacell P" 80 mm, $\lambda_{ref} = 0.039 \text{ W(m·K)}$; $R = 2.05 \text{ (m}^2 \cdot \text{K)/W}$ **

* Declared by the manufacturer

** Dossier / File P233719 - Document DEC / 1

Additional information:

Application, 2023-08-25

Annex:

Annex 1. Calculation results

(the numbers of the annexes should be pointed out)

Head of Laboratory: K. Banionis Respubli (approves the test results)

(n., surname)

Calculated by DOKUMENT (calculation made by) (n., surname)

S.P.

J. Ramanauskas

(signature)

(signature)

Validity - the named data and results refer exclusively to the tested and described specimens.

Notes on publication - no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

2(3)

Annex 1: Calculation results

Table 1: Products R- values

Tuble 11 Troudets It Values		
Product	Thermal resistance R, (m ² ·K)/W	
Pavacell P 80 (Dossier / File P233719 –	R = 2.05	
Document DEC / 1)	R = 2.05	
APRO (test report n° 065 SF/23 U)	$R_{core90/90} = 3.52$	
"Rcore90/90" is the declared R core value following EN 16012 + A1.		
"Rcore90/90" is calculated on 4 results of 4 samples came from 4 different fabrication dates following		
EN 16012 + A1 (and using the fractile 90/90 calculation rules $S_{R-prod} = \sqrt{\frac{\sum (R_i - R_{average})^2}{n-1}}$;).		

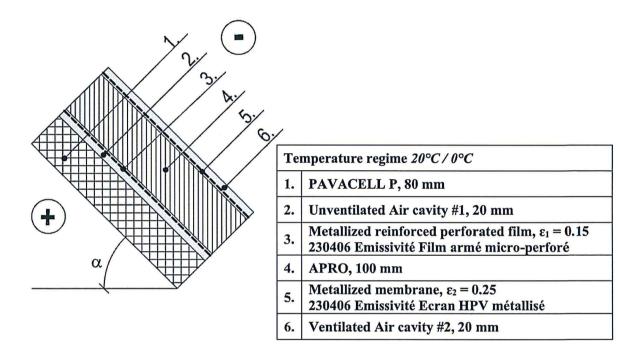


Figure 1. Roof construction design

Table 2: Roof construction calculation results for slope $\alpha = 0^{\circ}$ (EN ISO 6946)

ATI MIX OUATE DE CELLULOSE installed on roof			
Angle: $\alpha = 0^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	PAVACELL P 80	2.05	m²·K/W
	Unventilated Air cavity # 1	0.3663	m²·K/W
	Metallized reinforced perforated film		
	APRO	3.52	m²·K/W
	Metallized membrane		
	Ventilated Air cavity # 2 (the thermal resistance of external surface R_{se})	0.1624	m²·K/W
	R Total	6.10	m²·K/W

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.

Table 3: Roof construction calculation results for slope $\alpha = 30^{\circ}$ (EN ISO 6946)

ATI MIX OUATE DE CELLULOSE installed on roof			
Angle: $\alpha = 30^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	PAVACELL P 80	2.05	m²·K/W
	Unventilated Air cavity # 1	0.4006	m²·K/W
	Metallized reinforced perforated film		
	APRO	3.52	m²·K/W
	Metallized membrane		
	Ventilated Air cavity # 2 (the thermal resistance of external surface R_{se})	0.1866	m²·K/W
	R Total	6.16	m²·K/W

Table 4: Roof construction calculation results for slope α = 45° (EN ISO 6946)

ATI MIX OUATE DE CELLULOSE installed on roof			
Angle: $\alpha = 45^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	PAVACELL P 80	2.05	m²·K/W
	Unventilated Air cavity # 1	0.4202	m²·K/W
	Metallized reinforced perforated film		
	APRO	3.52	m²·K/W
	Metallized membrane		
	Ventilated Air cavity # 2 (the thermal resistance of external surface R_{se})	0.2017	m²·K/W
	R Total	6.19	m²·K/W

Table 5: Wall construction calculation results for slope α = 90° (EN ISO 6946)

Table 5. Wall construction calculation results for slope $\alpha = 90^{\circ}$ (EN 150 6946)			
ATI MIX OUATE DE CELLULOSE installed on wall			
Angle: $\alpha = 90^{\circ}$	Layer	R value	Unit
Ascendant Heat Flux (Winter period)	PAVACELL P 80	2.05	m²·K/W
	Unventilated Air cavity # 1	0.4927	m²·K/W
	Metallized reinforced		
	perforated film		
	APRO	3.52	m²·K/W
	Metallized membrane		
	Ventilated Air cavity # 2 (the		
	thermal resistance of external	0.2733	m²·K/W
	surface R_{se})		
	R Total	6.34	m2·K/W

Requirements for calculation validity:

- Calculations of R values are valid for a pitched roof (α is generally from 0° to 90°).
- Calculations of R values are valid when APRO is installed in agreement with the installation guidelines described into the manufacturer brochure.

Validity – the named data and results refer exclusively to the tested and described specimens.

Notes on publication – no part of this document may be photocopied, reproduced or translated to another language without the prior written consent of the Building Physics Laboratory.